
PRODUCT DATA

Miniature Triaxial Charge Accelerometer — Types 4326 A, 4326 A-001

Miniature Triaxial Accelerometers Types 4326 A and 4326 A–001 are piezoelectric accelerometers that provide a low sensitivity to extraneous environmental effects achieved through the patented ThetaShear[®] design.

FEATURES

- Low-weight, ThetaShear design giving high sensitivity/weight ratio and very low sensitivity to environmental factors
- All cable connectors on a single surface allowing a choice of five mounting surfaces
- O High resonance frequency giving a (+10%) frequency range of 8 to 16 kHz (axis dependent)
- O Electrically insulated for ground loop protection
- Mounting slots for interface to Mounting Clips UA 1408, UA 1474, UA 1473 and UA 1563. These allow for easy fitting to almost any test object – including fitting on objects with curved surfaces

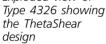
- \odot Easily accessible output via three robust 10–32 UNF titanium connectors
- O No need for expensive and delicate multi-wire cables and connectors

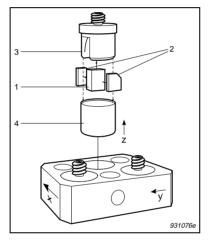
USES

- O Triaxial vibration and structural analysis in automotive, aerospace and general machinery applications
- O Vibration test control
- O General purpose multi-axis vibration and shock measurements on low-mass structures and in confined spaces
- Triaxial vibration measurements on running engines, hot engine components and other medium to high temperature applications (up to 230°C 446°F)
- O Multichannel modal analysis measurements

Description

Types 4326 A and 4326 A – 001 are composed of three separate ThetaShear accelerometers in a single lightweight aluminium (4326 A) or titanium (4326 A–001) housing, and aligned so that vibration can be measured in three mutually perpendicular directions.


Types 4326 A and 4326 A – 001 have been designed for triaxial vibration measurement applications with particular emphasis on low mass and small physical dimensions, combined with relatively high sensitivity and the greatest possible flexibility in mounting.


Both types have been designed with particular emphasis on low mass and small physical dimensions. They differ only in weight and temperature range. Type 4326 A–001 has a more robust titanium housing but is heavier than Type 4326 A.

To avoid triboelectrical noise originating in the connector and to provide maximum measurement reliability and confidence, special attention has been paid to the three connectors. Both accelerometers feature three separate and rugged 10-32 UNF connectors.

ThetaShear

Fig. 1 Exploded view of Type 4326 showi

The patented ThetaShear design, based on a development of the renowned Brüel&Kjær DeltaShear[®] design, provides for a combination of highest measurement stability, excellent sensitivity-to-weight ratio and industry leading low sensitivities to extraneous environmental effect.

The ThetaShear design is illustrated in Fig. 1. A slotted cylindrical stanchion (3) holds a central seismic mass (1) flanked by two piezoelectric plates (2). This assembly is clamped rigidly by the cover (4). To ensure optimum accuracy and reliability, no bonding agent other than molecular adhesion is required to hold the assembly together.

A remarkable feature of the ThetaShear principle is the fact that the transverse resonance frequency will always be found outside the 10% frequency limit. This ensures minimum interference from orthogonal vibration components in the useful frequency range of the accelerometer.

Environmental Sensitivity

One of the most troublesome environmental factors encountered when using piezoelectric accelerometers is temperature transients.

By careful choice of materials and mechanical design, this has been reduced to a minimum. The ThetaShear design also provides excellent immunity to other environmental effects such as base strains, magnetic sensitivity and acoustic fields.

Calibration

Each Type 4326 A is individually calibrated and supplied with a calibration chart (see Fig. 2). Long-term stability and reliability are ensured by artificial ageing during the

production process. Field checking and system calibration are straightforward using Brüel&Kjær's hand-held Calibration Exciter Type 4294 and Calibration Clip DV0460. The latter can only be used for calibration in the Z direction. For calibration in the X and Y direction use adhesive mounting.

Fig. 2 Calibration chart for Type 4326A

	netor	<u> </u>		ĸ	Electrical			Environmental:	
pe 4326 A		4	8		Capacitance of Irunadu		1800 pt*	Temperature Earge: Securitarity Parateting on Secure : Dil	- 55 M + 170 C (- 87 M + 347
n'iai He. :		Brüe	i & K)i	BF .	Insulation Resistance	sensing doments: body to-mounting eurleos:	> 21 GD > 11 MD 9 x AD 1096	Sessibility Deviation vs. Temp. : [20]	Xanty
ference Genelivity " at 158,2 Hz = 1800 s "), 20 ms ⁻² FMS and%	×			Ante POD				0 H H	- ·
wer Frequency Limit:	Dete	rmined by B	o ampiño					-60 -60	8 80 90 90 207 8 90 10 90 90
ger Preguency Limit (+1052)			16	1.52				Temp. Transient Sensitivity (3 He Low Un. Pr.)	
ounted Resonance Progenety:	27	34	40	REE				Magnetia Recallyity (10 Hz, 5.000 T)	5 m ²
an average Gene Mixing to Dipl. Secultivity axis am (at 30 Hz, 100 ms ⁻⁰)	46	< 5	< 5	5				Base Strain Sensitivity ist 258 µc in base plane) Mounted in Meeting City:	0.002=+*%
an overall Resonance Prequency:	+ 20	= 20	- 28	882				Mounted on adheelve tape 0.1 mm thick:	(*en HLO
deutatine values for TED6 *: Resonance frequence Quality factor 40 f				KR2				Max. Non-desitative Dissols Hamilty:	30 kms ⁻² paak (3000 g paa 30 % PH san-candenañ
Amplitude stope: easy-ting Plange: Max. operational sho Max. computers any		time" peak	(n 2000 g					Mechanical:	
earity of the electrical signals are positi								Case Material:	Anothese aluminia
arrows on the drawing.								Ease Materials	Titanium All Thi Exade
								Sewing Element	Plezoelectric, Type PZ1
 Tex contraction is obtained on a modeler this of A spec full controls "particular with the particular with a special strategies of the special strategies of the				the firs of ot or groups he	directly to the measuring object using the actions-good contact and improv- to be fastened directly to the measuring the transmission of the second s	we nounting attraces.	Bealley Weight	13 gram (0.46-o	
Terration Electronic Trate Their second right & Sendern Fain Frakewoor Senderly, Sender Hustweid, US SERTER 1, /F SERCERF and	EDE F1401.4.15				hot glue. However, if a rec to use sme of the special in algocit, is any case the mu- four types of mounting sh recommended for mounting thick base which can be th high temperature city. UK.	aced thequesky range can be accept nowing citize the between which is gr writing writing writing writing writing parting writing writing and the transition of the transmission. UN 1404 (set of ed to fit a canned mounting writing it has a canned mounting writing it.)	ed, it is recommended needto the measuring recent. It is not profile dip (100) is a dip with a Art liab part of by is a pror use where the	14.2 from mounting surface (5.1	1×02
Terretario Television Code Television Socialita Fair Televisio Decidine), terretaria model al TeleVision Code and terretariante agricultura de di C.E. C.	EDE F1401.4.15	uto Shani (SP	rier weite		htt glas, Hassewir, F.a. Hol to use une af the special tight, In any data the millipol, In any data Pour types of mounting it is documentation of the millipol tight temperature dip. UM- acoderometers in to be millipol Data Sheet DP 1941; A Applying a Milli groups for any second second second second points of the second second second second second second second second points of the second second second points of the second second second second points of the second	used theyever, range can be accept proving upper set tester, which is granting and the set tester, which is proving upper set tester, and and a set of the grant present excess. UR 1444 or and to the the converted excessing and the 1475 does not set of the set of the accepting ranks or if the accelerat Typical High's Traymontage.	ed. It is socialised the land to the measuring code. () is a too puttle clip () is a too puttle clip () it is too puttle clip () it is a constraint () it is a constraint clip () it is a constraint () it is a constraint (Mounting Holes: Mounting Surface Flatness: Centre of gravity of salartic mass H 2 from mounting surface (5.1)	3 x 0:2 <3 µ if gravity of accelerometer term-many-ting software andicater to the 2 auto;
resolution the finance bandwide Seature for Finance bandwide In mobile III OFFICE / PFOROMA AND International Control of Seature State International Control of Seature State III Control of S	EDE P1401.4.8v EDK 199860. 8k antičnošaci 3	uto Shani (SP	rier weite		Nor gain. Hansener, if a full to gaind in share into of the spectral distance. In stry case the two four space of an ounting it to commended for monthly it thinks base which can be it high the service of the stry Data Shored (20 + 1944). Applying a title prevane to The service of the service of the stry of the service of the stry of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of the service of	used theyeveroy range can be accept pointing user takes there which is granting and takes the deem and an output point point to the deem and an or area variable. Use takes paid on too go points and takes the deem and takes op- pred according to a period base op- pred according to a given or-otheran the mounting surface of the acceleror	ed, it is recommended land'to the measuring roots, it is a loss profile city if this is a city with a all fails used of D is a of the use where the system prec Product meters as well as the	Mounting Holes: Mounting Surface Flatness: Centre of gravity of salartic mass H 2 from mounting surface (5.1)	

Mounting

Special effort has been put into making mounting as flexible as possible. For fast and easy mounting, Mounting Clips UA 1408, UA 1473 and UA 1474 can be used. Five of the six surfaces can be used for mounting with adhesive cement or mounting wax. Where threaded holes can be provided in the test piece, Types 4326A and 4326A-001 can be mounted from the top via mounting holes in the base. The base can accommodate three M2 screws for top mounting.

Fig. 3 Mounting Clip UA 1408 Weight: 2.1 g Upper limiting frequency, 10% – mounted with grease: 2 kHz – dry mounting: 1.2 kHz

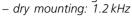


Fig. 4

Mounting Clip with Thick Base UA 1474 can be filed down to suit your mounting surface needs (see picture, far right) Weight: 3.9g

Upper limiting frequency, 10% - mounted with grease: 2 kHz

Fig. 5

High Temperature Mounting Clip UA 1563 Temperature Range: -55 to 175°C (-67 to 347°F)

If discoulouring can be accepted: -55 to 250°C (-67 to 482°F)

Weight: 11.0g

(Perpendicular to mounting surface: 50 g peak) Material: Base: anodized aluminium;

Spring: Stainless spring steel

Fig. 6

Mounting Clip with Swivel Base UA 1473 Weight: 5.0 g Upper limiting frequency, 10% (mounted with grease): - excited along one of the accelerometer's axes of sensitivity but with mounting surface of the hemispherical part perpendicular to the direction of excitation: 1.3 kHz - excited along one of the accelerometer's axes of sensitivity but with mounting surface of the hemispherical part at 45° to the direction of the excitation: 1.0 kHz

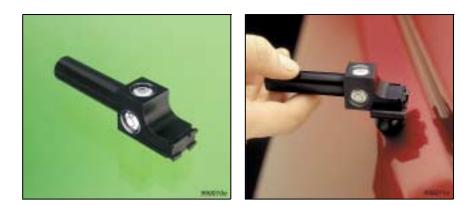


Fig. 7

Water Cooling Mounting Block UA 3014 for high temperature applications

Fig. 8 Spirit Level UA 1480 Max. dimensions: 85 × 23 × 17 mm Material: Black anodised aluminium

Ground Insulation

Ground loop noise, particularly troublesome in multichannel measurements, is avoided by electrically insulating the sensing elements from the common body. Both Type 4326 A and Type 4326 A–001 feature this electrical insulation with respect to signal ground and have a resistance of more than $10 M\Omega$.

The electrical insulation of Type 4326A comes from its fully hard anodised common body, with insulation at the three cylindrical mounting surfaces. The hard anodized mounting surfaces provide additional insulation.

The electrical insulation of Type 4326 A–001 comes from the special mounting technique for the three sensing elements. A non-conductive glue is used to bond the sensing elements to the holes in the common body. Advanced production techniques ensure that a thin and even layer of this glue is applied to the cylindrical surfaces of the sensing elements prior to placing them in the common body. This technique ensures correct electrical insulation as well as a rigid mechanical connection between the sensing elements and the common body. The three individually insulated sensing elements ensure that no ground loop currents are induced in the measurement setup. This is particularly beneficial in engine test applications.

Cables and Connectors

Extension cables of virtually any length can be supplied to order, or you can make your own using cable AC 0005 and a connector kit. An extension adaptor is used to couple the extension cable (for detailed information about these options see Ordering Information). To maintain the x-y-z colour coding of the extension cables, colour code clips are available to fit the thicker AC 0005 cable.

Cable Clamping

When using miniature accelerometers, the accelerometer cable can affect the measurement result because of forces exerted by the cable on the accelerometer connector. This can then cause amplitude irregularities in the output from the accelerometer at frequencies up to approximately 200 Hz. This can be reduced by using a flexible cable. To effectively reduce the problem at low frequencies, it is generally recommended to clamp the cable. One way of doing this is to make a small loop in the cable close to the accelerometer (max. diameter 30 mm) and clamp the cable beside the base of the

Specifications – Miniature Triaxial Accelerometers Types 4326A, 4326A–001

	Units	4326 – A	4326-A-001
Charge Sensitivity	pC/ms ⁻² (pC/g)	0.3 (3)	0.3 (3)
Sensitivity Tolerance		±15%	±15%
Frequency Range, ±10%			
x-axis	kHz	9	9
y-axis	kHz	8	8
z-axis	kHz	16	16
Mounted Resonance Frequency			
x-axis	kHz	27	27
y-axis	kHz	24	24
z-axis	kHz	48	48
Transverse Resonance Frequency			
x-axis	kHz	>20	>20
y-axis	kHz	>20	>20
z-axis	kHz	>20	>20
Transverse Sensitivity		<5% of sensitivity	<5% of sensitivity
Capacitance	pF	1000	1000
Base insulation to mounting surface	MΩ at 100 V	10	10
Maximum Non-destructive Shock	g	3000	3000
Ambient Temperatures	°C (°F)	-55 to +175 (-67 to +347)	-55 to +230 (-67 to +446)
Humidity		Sealed Connector	Sealed Connector
Temperature Transient Sensitivity	ms ^{−2} /°C	0.3	0.3
Base Strain Sensitivity ^a	ms ⁻² /με	0.01	0.005
Magnetic Sensitivity	ms ⁻² /Tesla	5	5
Case Material		Aluminium	Titanium
Base Material		Titanium	Titanium
Piezoelectric Element		PZ23	PZ23
Design Construction		ThetaShear	ThetaShear
Connectors		10-32UNF	10-32UNF
Dimensions (H×W×L)	mm	9×17×24	9×17×24
Weight	gram (oz)	13 (0.46)	17 (0.60)

a.Mounted on adhesive tape 0.1 mm thick

Compliance with Standards

TYPE 4326 AND TYPE 4326 A-001 UNLESS STATED ELSEWHERE

CE, C	CE-mark indicates compliance with: EMC Directive and Low Voltage Directive. C-Tick mark indicates compliance with the EMC requirements of Australia and New Zealand.
Safety	EN 61010-1 and IEC 61010-1: Safety requirements for electrical equipment for measurement, control and laboratory use. UL 3111-1: Standard for Safety – Electrical measuring and test equipment.
EMC Emission	EN 50081–1 and IEC 61000–6–3: Generic emission standard. Part 1: Residential, commercial and light industry. EN 50081–2 and IEC 61000–6–4: Generic emission standard. Part 2: Industrial environment. CISPR 22: Radio disturbance characteristics of information technology equipment. Class B Limits. FCC Rules, Part 15: Complies with the limits for a Class B digital device.
EMC Immunity	EN 50082–1 and IEC 61000–6–1: Generic immunity standard. Part 1: Residential, commercial and light industry. EN 50082–2 and IEC 61000–6–2: Generic immunity standard. Part 2: Industrial environment. Note 1: The above is guaranteed using accessories listed in this Product Data sheet only. Note 2: The above is guaranteed only when the AC output is not in use.
Temperature	IEC 68–2–1 & IEC 68–2–2: Environmental Testing. Cold and Dry Heat. Operating Temperature (4326 A): –55 to +175 °C (–67 to +347 °F) Operating Temperature (4326 A–001): –55 to +230 °C (–67 to +446 °F) Storage Temperature: –25 to +70 °C (–13 to +158 °F)
Humidity	IEC68-2-3: Damp Heat: 90% RH (non-condensing at 40 °C (104 °F))
Mechanical	Non-operating: IEC 68–2–6: Vibration: 0.3 mm, 20 m/s ² , 10–500 Hz IEC 68–2–27: Shock: 1000 m/s ² IEC 68–2–29: Bump: 1000 bumps at 250 m/s ²

Ordering Information

Types 4326 A/4326 A – 001 Miniature Triaxial Accelerometers include the following accessories: **Carrying Box** Individual Calibration Chart One Mounting Clip DV 0456

C

Customer specified lengths: AO 0038V - AC 0005-x AO 0122V - AC 0200-x AO 1382V-AC 0104-x where x specifies the length in metres

		UA 1243	3×30 pieces of red/green/yellow cable markers
	Accessories	UA 1244 YJ 0216	for Cable AC0104 As above for Cable AC0005 Mounting Wax
Cables		QS 0007	Cyanoacrylate Adhesive
AO 0038	1.2 m (4 ft) super low-noise Teflon cable, AC 0005 with 10–32 UNF connectors, 250°C (482°F)	UA 1408 DV 0460 UA 1480	Set of 100 Mounting Clips Calibration Clip Spirit Level
AO 0122	3 m (10 ft) reinforced super low-noise cable, AC 0200 with 10–32 UNF connectors, 250°C (482°F)	UA 1563 UA 1473 UA 1474	Set of 5 High-temperature Mounting Clips Set of 100 Swivel Bases Set of 100 Mounting Clips with Thick Base
AO 0406	5 m (16 ft) double-screened low-noise cable, AC 0104 with 10–32 UNF connectors, 250°C (482°F)	JP 0192 UA 1075 4326A–CFF	Solder Connector Adaptor Set of five Mounting Magnets M3, Ø10.2 mm Recalibration (sensitivity)
AO 1419	Low-noise cable, AC 0066 with 10–32 UNF connectors, 1.2 m (4 ft), 250°C (482°F)	4326A-001-CF	F Recalibration (sensitivity)
AO 1382	1.2 m (4 ft) double screened, low-noise Teflon cable, AC 0104 with 10–32 UNF connectors, 200°C (392°F)	Connectors UA 0130 UA 0730	Set of 25 10–32 UNF Microdot Connectors JP 0012 Set of 25 reinforced Microdot Connectors
	038, AO 0122 and AO 1382 are available in other	040/30	JP 0056
the order nu	10–32 UNF connectors. The following suffixes to mbers are used to specify the length when ordering: (except AO 0122)	UA 0186 Tools	Set of 25 10-32 UNF Extension Adaptors JJ 0032
G: 5 m (16 ft H: 10 m (33 f K: 30 m (100) it)	QA 0035	Connector Assembly Tool for Cable AC 0005 and Connector JP 0012

Brüel & Kjær reserves the right to change specifications and accessories without notice.

